Methylene blue has multiple indications for use, but recently it has been shown to be useful in treating refractory hypotension. Anaphylaxis results in widespread vasodilation and hypotension. Epinephrine has been described as the drug of choice in the treatment of hypotension for anaphylaxis, but the increased heart rate may be poorly tolerated by some patients.

This case report describes a 79-year-old man with a history of diastolic dysfunction who was admitted for elective coronary artery bypass graft surgery. After induction of general anesthesia, symptoms of anaphylaxis developed with urticaria and decreased mean arterial pressure. The hypotension was refractory to vasoactive agents and volume repletion. Methylene blue was primed in the cardiopulmonary bypass pump and was effective in restoring hemodynamic stability. Furthermore, the patient required a decreased amount of vasoactive agents in the postoperative course.

The suspected mechanism of action of methylene blue is inhibition of the enzyme nitric oxide synthase, which ultimately prevents the smooth muscle dilation that accompanies anaphylaxis. Methylene blue may be a valuable adjunct in the treatment of anaphylaxis and other causes of refractory hypotension.

Keywords: Anaphylaxis, hypotension, methylene blue, nitric oxide.
Diphenhydramine, 50 mg, and a 500-mL lactated Ringer's bolus were given intravenously for suspected anaphylaxis. Phenylephrine, norepinephrine, nitroglycerin, and insulin infusions were titrated to maintain normotension, dilate coronary vessels, and treat hyperglycemia. Phenylephrine was replaced with a vasopressin infusion after escalating doses and presumed tachyphylaxis. The surgery proceeded and the vessels were cannulated. Despite treatment the patient remained hypotensive, and therefore the bypass was initiated with methylene blue, 35 mg (0.5 mg/kg), primed into the bypass pump. All infusions of norepinephrine and vasopressin were discontinued 20 minutes later as the patient's mean arterial pressure returned to a normal 60 mm Hg. Hemostasis was ensured after grafting the obtuse marginal and left anterior descending coronary arteries. Cardiac bypass was discontinued and the patient was decannulated with infusions of milrinone, 1 µg/kg per minute; nitroglycerine, 1 µg/kg per minute; vasopressin, 0.04 U/min; and norepinephrine, titrated to effect. The overall requirement for vasopressors was noted to be lower than before the bypass. Protamine, 350 mg, was given intravenously.
during the next 10 minutes. The final pulmonary artery catheter values were pulmonary artery pressure, 51/36 mm Hg; cardiac index, 3.25 L/min per m²; systemic vascular resistance, 899 dynes·sec/cm⁵; and mixed venous oxygen saturation, 71%. Urine output total was 300 mL and the estimated blood loss was 400 mL. The patient was transported, while intubated and monitored, to the cardiac intensive care unit.

Discussion

Methylene blue has proven valuable for multiple indications. It is the treatment of choice for methemoglobinemia, used as a surgical tissue marker, and within the past decade, as a vasopressor for refractory hypotension.¹ There are case reports of success in treating hypotension, particularly in the face of sepsis, anaphylaxis, and vasoplegia syndrome after discontinuation of cardiopulmonary bypass, particularly when norepinephrine treatment has failed.¹⁻⁶ Case reports have also shown that methylene blue improved hemodynamics, or even prevented expected hypotension during liver transplantation, hemodialysis, and treatment of cirrhotic patients.⁷⁻⁹ Methylene blue therapy also has been used for patients who are chronically treated with angiotensin-converting enzyme inhibitors with refractory hypotension on induction of anesthesia.⁴

The proposed mechanism of action is prevention of smooth muscle vasodilation due to blockade of nitric oxide synthase.²⁻³⁻¹⁰ Nitric oxide, also known as endothelium derived relaxing factor, is formed from L-arginine by nitric oxide synthase in response to agonists such as acetylcholine, bradykinin, histamine, and thrombin. Nitric oxide is released from vascular endothelium and activates the enzyme guanylyl cyclase, increasing cyclic guanosine monophosphate concentrations intracellularly. The end result is vascular smooth muscle relaxation and vasodilation. Therefore, nitric oxide plays a pivotal role in the maintenance of systemic vascular resistance and as a mediator in the inflammatory response (Figure).

This case report demonstrates hypotension secondary to anaphylaxis that was refractory to treatment and that showed improvement with a gradual decrease in vasopressor requirement after methylene blue administration. Although the use of cardioplegia and protamine reversal of heparin may also contribute to postbypass hypotension, this treatment resulted in more stable blood pressure than expected after cardiopulmonary bypass was discontinued. Although vasopressors were used, the doses were lower than before cardiopulmonary bypass surgery. Compared to other case reports, the methylene blue dose used for this patient was low, at 0.5 mg/kg, which further demonstrates its efficacy. This dose was based on experience of the anesthesia provider, although previous studies show that a therapeutic dose of 1.5 to 2 mg/kg bolus followed by a continuous infusion of 0.5 mg/kg per hour.¹⁻³ Epinephrine was not administered in this case because of severe diastolic dysfunction and the goal of keeping the heart rate slow to maintain adequate ventricular filling times.

Observable adverse effects of methylene blue include falsely low readings on pulse oximetry and blue-tinged urine. Other adverse effects such as changes in alveolar gas exchange, abdominal pain, diaphoresis, nausea, headache, and cardiac dysrhythmias have been described, but according to this literature review, are infrequently reported.⁸ The only observed adverse effect that the patient demonstrated was blue-tinged urine for approximately 5 days. Furthermore, the oxygen saturation value was unaffected by methylene blue administration, which is consistent with another recent case study.¹¹ The minimal side effects observed here may have been dose related.

In conclusion, the clean adverse effect profile of methylene blue makes this a valuable adjunct to the anesthetist’s armamentarium for treatment of hypotension. The hemodynamic response is a reliable increase in blood pressure that can be used to treat hypotension refractory to other medications. This is consistently shown in both human and animal studies.¹² The efficacy has been demonstrated with the cardiothoracic anesthesia community and may be reproducible in other surgical populations.

REFERENCES

11. Taylor K, Holthoy H. Methylene blue revisited: Management of hypo-

AUTHOR

LT Alicia J. Weissgerber, CRNA, MSN, NC, USN, is a staff nurse anesthetist at Naval Hospital Camp Lejeune, Jacksonville, North Carolina. She was a student attending the Navy Nurse Corps Anesthesia Program, Naval Medical Center, San Diego, California, at the time this paper was written. Email: alicia.weissgerber@med.navy.mil.

ACKNOWLEDGMENT

I want to extend my greatest appreciation to CDR Lisa A. Osborne, CRNA, PhD, NC, USN, for her guidance.

DISCLAIMER

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government.