Recovery characteristics following antagonism of vecuronium with edrophonium, neostigmine or pyridostigmine

Maj. JOSEPH YUNGBLUTH, CRNA, MHS
Maj. JILL D. HENRY, CRNA, MHS
Maj. KATHLEEN McANALLEN, CRNA, MHS
Capt. DONALD T. ALBEE, JR., CRNA, MHS
Honolulu, Hawaii

Vecuronium-induced neuromuscular blocks in 42 ASA physical status I and II females were antagonized with atropine and equipotent doses of edrophonium, neostigmine and pyridostigmine. Recovery characteristics including speed of reversal, dysrhythmias and mean arterial pressure changes were studied. Edrophonium was associated with the fastest neuromuscular recovery. No clinically significant cardiovascular changes were found in any group.

It is imperative that any newly developed drug, along with its effects, dosage and interactions with other agents, be evaluated and documented. Vecuronium (Norcuron®) is one of the new neuromuscular blocking agents in use. It is a nondepolarizing agent of rapid onset and short duration, with minimal adverse systemic reactions. Secondary to its pharmacodynamics, vecuronium continues to gain increasing use and popularity as a surgical muscle relaxant.

Reversal of vecuronium can be accomplished with one of the anticholinesterase agents. The choice of which to use has been a personal one because there is limited documentation as to which of the reversal agents works best with vecuronium. A recent investigation by Kopman illustrates the point that ease of reversal is a function of several factors including the type of blocking agent used, the level of paralysis, the anticholinesterase chosen and the experimental conditions of the body. Miller has emphasized that a myriad of studies have evolved concerning neuromuscular blocking agents, their antagonists and multiple combinations of the factors just mentioned. Being able to apply these data to clinical anesthesia practice is of prime importance. In this study, edrophonium, neostigmine and pyridostigmine were evaluated as antagonists of vecuronium to determine if there was a significant difference between the three agents with regard to speed of reversal and cardiovascular stability.

Methods

This study utilized a quasi-experimental research design. The reversal agents served as the independent variables. Evaluation of the return of the train-of-four, the presence/absence of dysrhythmias and changes in mean arterial pressure (MAP) served as the dependent variables. Forty-two female patients undergoing laparoscopy were investigated after giving informed consent to a study approved by the Clinical Investigation and Human Use Committees of the affiliated hospital. All patients studied were ASA physical status I or II, non-obese and free of neuromuscular disease, upper extremity dysfunction, and hepatic or renal dysfunction by history. The patients were normothermic and taking no medications known to interfere with neuromuscular transmission. Serum potassium, calcium and magnesium were within normal levels.
The patients were assigned to one of three groups using a computer-generated, random number table. Group E received edrophonium 0.5 mg/kg; Group N received neostigmine 0.043 mg/kg; and Group P received pyridostigmine 0.21 mg/kg. All groups concomitantly received atropine 0.015 mg/kg as the anticholinergic agent. A CRNA assistant prepared the reversal agent in a specially coded syringe with identical volumes in comparative syringes. The researchers were not aware of the group assignment of each individual patient.

The vecuronium, atropine and anticholinesterase agents were obtained from identical respective lots. All patients were monitored with the same automatic auscultatory blood pressure monitor (Dinamap® by Critikon), Hewlett Packard Capnometer® 47210A, neurotechnology peripheral nerve stimulator and a Medar APM® force displacement transducer. All monitors were calibrated and maintained to manufacturer's specifications.

The patients received no premedications and had nothing by mouth after midnight. In the operating room "prehold" area, an intravenous line was started in a convenient site of each patient's arm. A blood pressure cuff was placed on the other arm and electrocardiogram (ECG) electrodes were applied to monitor lead II. Continuous monitoring of ECG was accomplished using a Hewlett Packard monitor 78534B. Blood pressure was ascertained and recorded every five minutes using a Dinamap® monitor during the surgical procedure. Blood pressure was measured more frequently if needed using the "demand" mode.

Patients were preoxygenated with 6 L/min. by mask. Fentanyl 2-3 μg/kg and droperidol 1.25 mg were given intravenously. Anesthesia was induced with sodium thiopental 5 mg/kg. Once the patient was asleep, 27-gauge needle electrodes were placed over the ulnar nerve at the wrist and a supramaximal stimulus was delivered. The muscle twitch of the adductor pollicis muscle was recorded using a Medar APM® force displacement transducer connected to a Hewlett Packard preamplifier and recorder unit. Control values for twitch height and train-of-four were recorded. Vecuronium 0.05-0.10 mg/kg was given for intubation. When twitch height was less than 25% of control, intubation of the trachea was performed using direct laryngoscopy.

Anesthesia was maintained with N_2O 67% and O_2 33% via a semiclosed circle absorber system. Fentanyl 50-100 μg or sodium thiopental 50-75 mg were supplemented as needed. If twitch height returned to 25% of control before the end of the surgical procedure and additional muscle relaxation was needed, vecuronium 0.01 mg/kg was given. Controlled ventilation was maintained with respiratory rate and tidal volume measured by the Ohmeda 5400 Volume Monitor® on the Ohio Modulus II® anesthesia machine. Ventilations were delivered to maintain end-tidal CO_2 at 35-40 torr as measured by Hewlett Packard end-tidal CO_2 monitor. A nasopharyngeal temperature probe was placed and temperature was measured on the Hewlett Packard monitor. Temperature was maintained between 35.5 and 37.5°C by use of a K-thermia® blanket.

On removal of the laparoscopic trocar, the train-of-four was evaluated and a continuous recording of ECG and train-of-four at 10 second in-

Table I
Demographic comparison

<table>
<thead>
<tr>
<th></th>
<th>Edrophonium</th>
<th>Neostigmine</th>
<th>Pyridostigmine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>21-36</td>
<td>21-37</td>
<td>21-37</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>27.7 ± 4.1</td>
<td>27.2 ± 5.2</td>
<td>28.7 ± 4.2</td>
</tr>
<tr>
<td>Height (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>60-67</td>
<td>62-69</td>
<td>62-70</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>64.4 ± 2.3</td>
<td>64.8 ± 2.1</td>
<td>65.8 ± 2.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>41-73</td>
<td>45-79</td>
<td>46-77</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>61.5 ± 8.4</td>
<td>61.7 ± 10.2</td>
<td>62.1 ± 10.0</td>
</tr>
</tbody>
</table>

SD = Standard deviation
p value <0.05

Journal of the American Association of Nurse Anesthetists 128
tervals was initiated. MAP and heart rate were then recorded every minute. With the closure of the incision, the prepared reversal agent was administered intravenously over 20 seconds. When neuromuscular recovery was reached (T4 ratio = 0.75), the N₂O was discontinued and 100% O₂ was delivered with controlled or assisted ventilations until spontaneous ventilation returned.

The time from injection of reversal agent to return of T4 ratio to 0.75 was ascertained. The mean reversal time of each group was computed and analyzed using a Student’s t-test and analysis of variance (ANOVA) to determine whether statistically significant differences existed. Statistical significance regarding the incidence of dysrhythmias and MAP changes was examined using chi-square tests with 2x3 contingency tables. Level of significance for all analyses was p < 0.05. Statistical analysis was computed on an IBM PC computer using the Epistat® software program.

Results

Thirty-eight ASA physical status I and four ASA physical status II females undergoing laparoscopic procedures were randomly assigned to one of three groups: Group E (n=13), Group N (n=12) and Group P (n=13). ANOVA showed no statistical differences in demographic data between the three groups (Table I). Four patients were not included secondary to a lack of spontaneous return of neuromuscular activity at time of reversal. Data on these patients were not included in the statistical analysis.

Anesthesia was maintained with mean doses of the agents indicated in Table II. Mean surgical time was 32.8 minutes with a range of 11-72 min-

<table>
<thead>
<tr>
<th>Table II Anesthetic doses, surgical time and recovery data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium thiopental mg/kg</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Fentanyl µg/kg</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Vecuronium mg/kg</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Surgical time (minutes)</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>T4 ratio at reversal</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>T4 recovery to 0.75 (sec)</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Dysrhythmias present (number)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>mean arterial pressure changes ± 20%</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SD = Standard deviation
* = Differs from Groups N and P; p <0.05
** = Differences found between the groups per chi-square; p <0.05
utes. Mean T4 ratio prior to reversal for each group was: Group E = 0.246, Group N = 0.241, Group P = 0.114. ANOVA showed no statistical differences between the three groups (Table II).

Mean times from administration of the reversal agent to a T4 ratio of 0.75 can be compared for each group in Table II. ANOVA showed a significant difference between the groups. Further analysis with Student's t-test demonstrated that the reversal time in Group E was significantly less than Group N or P. However, Group N was not statistically different from Group P (Table II).

Dysrhythmias were noted with all reversal agents. Chi-square analysis showed no statistical difference between the groups with p > 0.05. Mean arterial pressure changes of 20% were noted with all agents. Chi-square analysis showed a statistical difference between the groups with p < 0.05 (Table II).

Discussion. Results showed that edrophonium had a significantly faster neuromuscular recovery time than either neostigmine or pyridostigmine in the presence of a vecuronium-induced neuromuscular block. This is consistent with the findings of Cronnelly et al. and Harper et al. in the reversal of other non-depolarizing neuromuscular blocking agents. Baird et al. showed that edrophonium was twice as fast as neostigmine in reversing vecuronium in cats. This is consistent with the authors' results of edrophonium being 2.3 times faster than neostigmine.

Ferguson et al. studied the reversal of pancuronium-induced neuromuscular blocks and found that edrophonium was faster than neostigmine, which was faster than pyridostigmine in the return of the T4 ratio. The authors' study differed from these findings in that there was no difference in the speed of reversal between neostigmine and pyridostigmine in vecuronium-induced blocks.

At the neuromuscular junction, acetylcholine is normally hydrolyzed into acetic acid and choline by the enzyme acetylcholinesterase. During the hydrolysis, the quaternary group of the choline combines by electrostatic attraction to the anionic site of the acetylcholinesterase, and the carbamate group interacts at the esteratic subsite. The choline splits off and the acetylated enzyme which remains rapidly hydrolyzes to form acetic acid and regenerated active enzyme. The choline is taken up by the presynaptic nerve terminal for the formation of more acetylcholine, and the acetic acid is dispersed into the extracellular fluid.

Anticholinesterase agents inhibit acetylcholinesterase by reversibly combining at either the active center site or a peripheral ionic site. Acetylcholine cannot be hydrolyzed as long as the anticholinesterase agents are combined with the acetylcholinesterase sites. Therefore, the concentration of acetylcholine increases at the neuromuscular junction.

Edrophonium is a potent, reversible, competitive inhibitor of acetylcholinesterase which competes with acetylcholine for the anionic site. Its duration of inhibition is brief due to the reversibility of binding. Both neostigmine and pyridostigmine transfer a carbamate group to the enzyme, which chemically combines at the esteratic site. The acetylcholine cannot bind to the enzyme until the carbamate enzyme is hydrolyzed. This hydrolysis takes place at a slower rate than the hydrolysis of acetylcholine, thus producing a longer lasting inhibition of the acetylcholinesterase. This correlates with past thoughts that edrophonium did not have a sufficient duration of action to effectively reverse neuromuscular blocking agents.

Edrophonium, neostigmine and pyridostigmine have been shown to increase miniature end-plate potential frequency, quantal release, size and rate of the available acetylcholine stores of the nerve terminal. The effects of these drugs on the nerve terminal do not appear to result from the inhibition of acetylcholinesterase. Neostigmine has also been found to cause direct stimulation of the end-plate region, which has not been found with either edrophonium or pyridostigmine.

A 1982 study showed that the magnitude of antagonism produced by edrophonium increased with dose; however, the duration of antagonism was in a linear relationship only to a dose of 0.125 mg/kg. If the duration of antagonism was directly proportional to the duration of enzyme inhibition, then greater blood levels produced with increased edrophonium dosage should continue to lengthen the time of inhibition and, therefore, antagonism. This study also found that edrophonium appears to have predominantly presynaptic effects.

Studies by Cronnelly and Morris have demonstrated that equi-antagonistic doses of neostigmine and edrophonium have the same duration of action. Pyridostigmine, however, had a 40% longer duration of antagonism than either edrophonium or neostigmine. Previous practices and studies that resulted in inadequate duration of action of edrophonium were based on doses less than equi-antagonistic. Edrophonium 0.5 mg/kg has been found to be equivalent to neostigmine 0.043 mg/kg for the reversal of nondepolarizing neuromuscular blocking agents.

Edrophonium has been gaining popularity as

Journal of the American Association of Nurse Anesthetists
a reversal agent for several reasons. It has a more rapid onset of action and has less muscarinic effects, thereby requiring less anticholinergic drug to counteract them. The assumption is that a faster recovery with less cardiovascular instability can be obtained with edrophonium.

Edrophonium is a smaller compound with a molecular weight of 166 compared to 223 for neostigmine. It has been suggested that the factor that limits the speed of onset of action may be the rate at which the cation diffuses from the plasma to the receptor sites. The smaller molecular size and higher molar dose of edrophonium may provide a more rapid diffusion to the site of action. Edrophonium has an onset of action of 0.8 - 2 minutes, neostigmine, 8 - 11 minutes, and pyridostigmine, 12 - 16 minutes. Differences in onset of action may be due to times required for enzymatic inhibition.

Studies of the reversal of alcuronium, using train-of-four, showed a more rapid recovery of first contraction response and achievement of plateau with edrophonium than either neostigmine or pyridostigmine. Studies of the reversal of d-Tubocurarine demonstrated a significantly faster onset of action of edrophonium 0.5-1.0 mg/kg over neostigmine 0.043 mg/kg and pyridostigmine 0.21 mg/kg. Comparative studies of the antagonism of pancuronium with neostigmine, pyridostigmine and edrophonium showed a significantly more rapid return of first response of train-of-four and T4/T1 ratio with edrophonium. In studies with cats, edrophonium was found to produce full antagonism of vecuronium twice as rapidly as neostigmine.

Numerous dysrhythmias were noted in each group and warrant delineation. Group E showed two episodes of junctional rhythm, two of first degree atrioventricular (AV) block, four of second degree AV block and three of sinus tachycardia. Group N showed two occurrences of junctional rhythm, one of first degree AV block, one of second degree AV block, one of third degree AV block, one of sinus bradycardia and three of sinus tachycardia. Group P demonstrated two episodes of junctional rhythm, one of second degree AV block, one of premature ventricular contractions, three of sinus tachycardia and one of sinus bradycardia. Of all rhythms seen, none caused hemodynamic compromise as evidenced by the fact that all patients maintained an adequate MAP, and all rhythms reverted to normal sinus rhythm without intervention. Although the occurrences were not statistically different between groups, all criteria for chi-square analysis were not met. Specifically, observed values were not greater than or equal to five. This must be considered in the interpretation of these findings.

With the inhibition by anticholinesterase, the subsequent increase in acetylcholine occurs not only at the neuromuscular junctions, but also at the cholinergic receptors of the parasympathetic nervous system. If this is allowed to occur unchecked, one of the most clinically significant results is bradycardia secondary to vagal stimulation. An anticholinergic agent, usually atropine or glycopyrrrolate, is given with the anticholinesterase agent. Edrophonium has been found to require less atropine than either neostigmine or pyridostigmine to prevent muscarinic effects. It has been suggested that an antagonist that requires less atropine would be associated with fewer cardiac dysrhythmias.

Several studies have shown conflicting conclusions, including (1) that there is no significant difference in dysrhythmias between groups reversed with edrophonium or neostigmine; (2) that there is a higher incidence of dysrhythmias with the neostigmine group; and (3) that there are no dysrhythmias but wider fluctuations in heart rate with neostigmine. Fogdall et al. demonstrated that the cardiac muscarinic side effects of neostigmine and pyridostigmine were similar during antagonism of a d-Tubocurarine-induced blockade.

The authors chose atropine as the anticholinergic agent to reduce the number of variables in this study. The dose of 0.015 mg/kg was selected to assure adequate antimuscarinic protection for the neostigmine and pyridostigmine groups. In spite of this, no difference was found in the incidence or type of dysrhythmias between the groups.

Analysis of MAP changes was statistically significant between groups. Group E showed the largest number of patients with MAP changes, while Group N had the fewest. Changes in all groups were well within accepted clinical limits. The majority of changes were increases, which correlates with the general findings of Mirakhur et al. and Cozanitis et al. These researchers suggested a causal relationship between these changes and the lightening of anesthesia. As with dysrhythmia analysis, all criteria for chi-square analysis were not met.

Other variables in the reversal of neuromuscular blocking agents have been documented. Antibiotic interactions with muscle relaxants have been well documented with no one mechanism of action found for all antibiotics. Some are thought to produce neuromuscular blockade by inhibition of acetylcholine release from the presynaptic nerve terminal and by stabilization of the postjunctional membrane, whereas others have just a postsynaptic effect. Neostigmine can successfully antagonize some but not all of these blocks.

Local anesthetics and antidysrhythmics en-
hance the neuromuscular block of both nondepolarizing and depolarizing agents. Quinidine in particular has been noted to potentiate neuromuscular blocks, and edrophonium has been ineffective in antagonizing a nondepolarizing block after the administration of quinidine.17

Electrolyte imbalances also will affect neuromuscular blockade and its antagonism. Hyperkalemia will enhance a depolarizing muscle relaxant and oppose the action of the nondepolarizing agents. Magnesium enhances the relaxant properties of both depolarizing and nondepolarizing agents. Hypocalcemia has also been found to augment muscle relaxants.8

Respiratory acidosis enhances nondepolarizing neuromuscular blocking action and opposes reversal by neostigmine.16 Antagonism is also blocked by metabolic alkalosis, but this may actually be related to electrolyte changes associated with the pH abnormality.8

Volatile anesthetic agents also augment the neuromuscular block produced by nondepolarizing muscle relaxants. A study by Rupp et al. demonstrated that enflurane was more potent than isoflurane or halothane in augmenting a vecuronium-induced neuromuscular blockade. This study also showed that increasing the concentration of volatile anesthetic had less effect on a vecuronium-induced block than on blocks induced by pancuronium or d-Tubocurarine. This study suggests that the end-tidal concentration of isoflurane (Forane®) from 0.5% to 1.5% had minimal effect on the neuromuscular block induced by vecuronium.18

Limitations to this study exist. The sample group was chosen from an available volunteer female population. The sample size was small. Four researchers collecting data along with several CRNA assistants preparing the reversal agents may have altered consistency in this study. The exclusion of data from four subjects must also be considered a limitation.

T4 ratio at the time of reversal was not controlled in this study and return of single twitch height (T1/Tc) was not calculated. Data from four subjects were not used due to a lack of spontaneous return of neuromuscular activity at the end of the surgical procedure. ANOVA showed that there was no difference in the T4 ratio between the groups; however, the range within the groups was 0.0-0.63. Baird et al. found that the magnitude of antagonism is dependent on the amount of spontaneous recovery of muscle twitch at the time of administration of the anticholinesterase.19 Kopman was unable to produce satisfactory reversal of neuromuscular blockade with edrophonium 0.5 mg/kg, when spontaneous return of the fade ratio was less than 0.10.20

In Kopman’s more current work, recovery with neostigmine was faster than with edrophonium when continuous infusion of pancuronium, vecuronium or atracurium had maintained a T1/Tc of 0.10.1

Studies by Graham et al. have suggested that the site of action of competitive neuromuscular blockers to produce twitch and train-of-four depression during onset and recovery of neuromuscular blockade may be different for each neuromuscular blocking agent.21 For these reasons, the comparison of findings between studies must cite the mode of neuromuscular stimulation being measured, which neuromuscular blocking agent was used, and the degree of control of muscle relaxation at the time of reversal.

Recommendations for future study include using a larger sample size comprised of male and female patients of ASA physical status I through IV. An alternative study could compare various anticholinesterase-anticholinergic combinations. Controlling the T4 ratio at time of reversal would be another consideration as well as comparing with T1/Tc.

Conclusions
Before incorporating the results of this study into individual practice, the reader should acknowledge the limitations present in this study. Variations in patients and/or anesthetic practice may alter recovery characteristics following antagonism of vecuronium. Being aware of the differences in recovery times may assist the practitioner in deciding when to administer the antagonist.

It was demonstrated within the population studied that edrophonium antagonized vecuronium-induced neuromuscular block faster than did neostigmine or pyridostigmine. No difference in reversal time was found between neostigmine and pyridostigmine. Only edrophonium was associated with statistically significant MAP changes; however, there were no clinically significant cardiovascular changes in any group.

REFERENCES

AUTHORS
The authors are all graduates of the Anesthesiology for Army Nurse Corps Officers Course, Tripler Army Medical Center, Honolulu, Hawaii. They received Master of Health Science degrees from Texas Wesleyan College, Ft. Worth, Texas. Maj. Joseph Yungbluth, CRNA, MHS, received her BSN from the University of Nebraska College of Nursing, Omaha, Nebraska. He is currently a staff anesthetist at Fitzsimons Army Medical Center, Aurora, Colorado.
Maj. Jill D. Henry, CRNA, MHS, received her BSN from the Walter Reed Army Institute of Nursing, Washington, D.C. She is presently assigned as a staff anesthetist at Martin Army Community Hospital, Ft. Benning, Georgia.
Maj. Kathleen McAnallen, CRNA, MHS, received her BSN from Carlrow College, Pittsburgh, Pennsylvania. She is presently assigned as a staff anesthetist at Walter Reed Medical Center, Washington, DC.
Capt. Donald T. Albee, Jr., CRNA, MHS, received his BSN from Western Connecticut State University. He is currently a staff anesthetist at Tripler Army Medical Center, Honolulu, Hawaii.

ACKNOWLEDGEMENTS
The authors wish to acknowledge the following people: Lt. Col. Hal Hughes, CRNA, Lt. Col. Mary Sealy, CRNA, and Maj. Ron Ostmann, CRNA, for their guidance and support as faculty advisors; Maj. William Browning, MSC, for statistical analysis and pharmacy support; staff CRNAs at Tripler Army Medical Center for assistance in the preparation of reversal combinations; the Ambulatory Surgery Center staff for assistance in laboratory data collection; and especially Dr. Ed Miller and Ms. Megan Ward of Organon Inc. for use of the Medar APM® force displacement monitor.

The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the department of the Army or the Department of Defense.
At Dunhill of Charlotte we have specialized in the personnel recruitment and placement of medical specialists for over 25 years. If you are searching for a new career challenge and opportunity, we would like to talk with you today!

We specialize in the placement of CRNAs. Our medical specialists can connect you with outstanding opportunities on all levels in the health care field across the United States. We have a network of over 300 affiliate offices coast to coast, therefore you'll find no restrictions as to the locations you choose to explore.

We are not asking you to make any commitment. There is never a fee with Dunhill of Charlotte, and all matters are held in strict confidence. Keep your career running in high-gear by letting Dunhill of Charlotte go to work for you today! Give us a call now, or send your resume to:

Jay D. Robinson, CPC
Medical Services Consultant
DUNHILL OF CHARLOTTE, INC.
6401 Carmel Road
Suite 107
Charlotte, N.C. 28226
1-800-438-2012
In North Carolina, call collect
(919) 748-4717.

The Right Career Choice!

Geisinger Clinic

MANAGER ANESTHESIA SERVICES

To manage and direct a department of 36 nurse anesthetists providing services to a broad spectrum of surgical specialists including cardiovascular, transplant, trauma, gynecologic pediatric, neonatal and neurosurgery.

Geisinger Medical Center is the tertiary referral center for more than 2.5 million people in central and northeastern Pennsylvania. It is also a level I trauma center. This 569 bed teaching and referral center is experiencing over 400,000 outpatient visits, 20,000 admissions and 12,000 surgical procedures annually.

Successful candidate will be a certified CRNA and will preferably bring a Master’s degree in anesthesia or management. A broad and in-depth knowledge of anesthesia services and equipment, and at least 5 years supervisory experience, preferably at the department head level, with emphasis on leadership, problem-solving and communication also desired.

Equal Opportunity Employer M/F/H

Dunhill Means Medical Specialists

At Dunhill of Charlotte we have specialized in the personnel recruitment and placement of medical specialists for over 25 years. If you are searching for a new career challenge and opportunity, we would like to talk with you today!

We specialize in the placement of CRNAs. Our medical specialists can connect you with outstanding opportunities on all levels in the health care field across the United States. We have a network of over 300 affiliate offices coast to coast, therefore you'll find no restrictions as to the locations you choose to explore.

We are not asking you to make any commitment. There is never a fee with Dunhill of Charlotte, and all matters are held in strict confidence. Keep your career running in high-gear by letting Dunhill of Charlotte go to work for you today! Give us a call now, or send your resume to:

Jay D. Robinson, CPC
Medical Services Consultant
DUNHILL OF CHARLOTTE, INC.
6401 Carmel Road
Suite 107
Charlotte, N.C. 28226
1-800-438-2012
In North Carolina, call collect
(919) 748-4717.

The Right Career Choice!

North Carolina Baptist Hospital

CRNAs

Sacred Heart Hospital, Cumberland, Maryland is seeking a full time CRNA, experienced or new graduate accepted. Salary range from $37,400 to $46,000 plus full benefit package. Relocation assistance available.

Operated by the Daughters of Charity National Health System, Sacred Heart is a 240-bed acute care facility with 5 ORs. Excellent family living.

Submit resume to: Bettie Padfield Personnel Director Sacred Heart Hospital 900 Seton Drive Cumberland, MD 21502 or call (301) 759-5065 EOE
Introducing the group that sets the standard for uncompromising quality in CRNA staffing.

You now have a choice — Group One Anesthesia introduces a new standard of service and opportunity for exceptional CRNAs.

Our elite group offers:
- guaranteed compensation
- paid malpractice insurance
- 12 weeks vacation
- licensure processing and expenses
- insurance and retirement benefits available

When you know you are the best you expect to be part of a superior organization. Group One Anesthesia provides uncompromising quality in temporary and permanent staffing. With Group One Anesthesia you choose the direction your career will take!

For Information about the Group One CRNA Experience
Call 1-800-634-1077 or return this coupon to Group One Anesthesia

☐ Yes, I want to learn more about working as a Group One Anesthesia CRNA.
☐ Yes, I want to learn more about Group One Anesthesia providing coverage for my practice.

Name ____________________________
Address ____________________________
City ____________________________ State _________ Zip _________
Phone ____________________________ Best time to call _________

Group One Anesthesia
155 South 300 West Suite 300
Salt Lake City, Utah 84101
1-800-634-1077 in Utah 801-532-1171
Nurse Anesthetist

CRNA

We seek the exceptional CRNA to provide optimum clinical care for patients undergoing major oncologic surgical procedures. The expanding Anesthesia service at MSKCC is an integral part of the Cornell-Affiliated Anesthesia Program, thus affording the opportunity to participate in ongoing clinical research and teaching programs.

BSN, Board Certified, and 1-2 years' experience required. Prior experience in an academic setting desirable.

We offer a superb compensation package and an excellent opportunity for career development. Send resume to: E.L. Kleinert, Personnel Department #470, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., NYC 10021.

Memorial Sloan-Kettering Cancer Center
Where the exceptional is the rule

NURSE ANESTHETIST
C.R.N.A.

Full-time or Part-time

An excellent opportunity exists for a Certified Registered Nurse Anesthetist at Saint Vincent Health Center, a 580-bed JCAH accredited tertiary care facility in Erie, PA. The position provides exceptional challenge and growth for the individual experienced in both inpatient and outpatient anesthesia. Erie, located in Northwestern Pennsylvania on the southern shores of Lake Erie, is the third largest city in the state, offering diverse cultural and recreational opportunities. The position includes a comprehensive benefits package; salary commensurate with education and experience. Send resume to: Mrs. Bea Gallo, Employment Manager, SAINT VINCENT HEALTH CENTER, 232 W. 25th St., Erie, PA 16544.

An Equal Opportunity Employer

Nurse Anesthetists
Lexington, Kentucky

Good Samaritan Hospital is a 336-bed institution with all surgical specialties except open heart. There are several openings for CRNAs.

A growing community in Central Kentucky, Lexington offers a variety of educational, cultural, recreational, and sporting activities.

Base Salaries:
No experience37,000 to 45,000
5 years' experience42,000 to 51,000

Please send resume with inquiries to:
Bluegrass Anesthesia
P.O. Box 24572, Lexington, Ky. 40524
(606) 252-6612, Ext. 3279

"Caring was my first choice. That's why I'm here."

Jackson Memorial Hospital has sometimes been called "a city within a city." And so it is — a city of caring. We are the Southeast's largest teaching hospital with 1,250 beds, ample opportunities to apply your caring skills and a new salary structure in effect for C.R.N.A.s. (New graduates start at $41,959) We currently have immediate openings for our full-time 4 day/week schedule.

We offer comprehensive benefits that include 29 personal leave days, free CEU's, 100% tuition reimbursement, 4 educational leave days, health and life insurances plus much more. Let's talk. The choice is easy. Call Nurse Recruitment collect at (305) 324-6611 for immediate consideration. Jackson Memorial Hospital, 1611 N.W. 12th Ave., Miami, FL 33136.

Jackson Memorial Hospital

The Nurses' Choice.

(Exit N.W. 12th Ave. from 836 Expressway)
Equal Opportunity/Affirmative Action Employer