This study describes criteria used by graduate nurse anesthesia educational programs (GNAEPs) in selecting students for admission. The investigators prepared and distributed a 15-item questionnaire to 71 GNAEPs as listed by the Council on Accreditation of Nurse Anesthesia Educational Programs for December 1992. Thirty-eight of 71 (54%) of GNAEPs participated in this study.

Upon examination of standardized test scores, mean Graduate Record Exam scores were: analytical 533, quantitative 512, verbal 510, and cumulative 1,552. The mean Millers Analogy Test score was 47. The mean overall grade point average (GPA) was 3.32 and the mean science GPA was 3.20.

Experience in critical care nursing averaged 5 years, with 54% of students coming from surgical intensive care units and 81% Advanced Cardiac Life Support certified. The most commonly identified prerequisite course was organic/biochemistry.

All programs required references, 97% required interviews, and 68% required essays. Program directors ranked overall GPA, interview, and science GPA among the factors considered most in the selection process. The sample revealed an acceptance rate of 22% for those applying to GNAEPs.

Key words: Anesthesiology education, graduate, nurse anesthetist, nursing education.

Introduction
Nurse anesthesia education programs are modifying curriculums in order to meet a requirement that all offer a master's degree by 1998. Much has been written regarding this requirement's influence on nurse anesthesia education. Yet, to our knowledge, no study has specifically examined the impact of this trend on admission expectations and prerequisites of graduate nurse anesthesia educational programs (GNAEPs) for applicants.

In 1983, there were 143 nurse anesthesia programs graduating 1,100 students. By 1991, there were 89 programs with 700 graduates. This decrease partly resulted from an effort to place schools in a graduate level framework. Many nurse anesthesia clinical spaces were also transferred over to anesthesiology residencies. Since 1967, the number of anesthesiology residents tripled. Approximately 20 years ago, there were two Certified Registered Nurse Anesthetists (CRNAs) to each anesthesiologist, but by 1991, the ratio was 1.2:1. This decline in nurse anesthesia graduates throughout the 1980s concerned the leaders of the American Association of Nurse Anesthetists (AANA). The AANA partly attributed this decline to a decrease in the number of qualified applicants.
Finally, nurse anesthetists have always been a major provider of anesthesia services, though they were not always accorded the same level of professional respect and financial payment as they are today. Nurse anesthesia is also an attractive field to those interested in one-on-one patient care, greater autonomy, and other reasons. This possibly implies great interest in this nursing specialty.

For the previously discussed matters, there is substantial impetus to investigate the factors considered for admission to a GNAEP. Therefore, the purpose of this study was to describe requirements and qualifications GNAEPs used to select students for admission. The following factors were examined:

- Standardized test scores.
- Grade point averages (GPAs).
- Years and areas of critical care experience.
- Nursing certifications.
- Prerequisite courses.
- Criteria considered most in selection.

This study's two primary research questions were:

1. What are the current qualifications of nurses accepted into graduate nurse anesthesia educational programs?
2. What requirements and factors influence the selection process?

Methods and materials

A 15-item questionnaire examining the above factors was prepared. The questionnaire was then reviewed by two graduate CRNA educators. An Institutional Review Board determined the study as exempt under federal research guidelines. Cover letters and questionnaires were distributed to 71 GNAEPs as listed by the Council on Accreditation of Nurse Anesthesia Educational Programs for December 1992.

Program directors provided summary information on their programs and students admitted for the 1992-93 school year. Individual institutional information was kept strictly confidential.

Results

Thirty-eight of 71 GNAEPs (54%) participated in this study. Included were 67% of military GNAEPs and 42% of programs which offered a master's degree on an optional basis only. Each major geographic region of the country was represented.

For each applicable study variable, the survey collected the highest and lowest scores of admitted students, as well as a program mean for each GNAEP. The sample mean for each variable was derived by using the weighted mean method. This method eliminated the possible error introduced by simply averaging the reported means from each GNAEP.

Upon examination of standardized test scores, the following statistics were obtained for the Graduate Record Exam (GRE). Analytical scores ranged from 330 to 800 and analytical program means ranged from 470 to 647. The analytical sample mean was 533. Quantitative scores ranged from 310 to 800 and quantitative program means ranged from 327 to 637. The quantitative sample mean was 512. Verbal scores ranged from 300 to 760, and the range for program means was 426 to 625. The verbal sample mean was 510. These component program means were summed to derive the cumulative GRE program mean. The lowest cumulative GRE program mean was 1,227 and the highest was 1,887. The cumulative GRE sample mean was 1,555 (Table I). There were 11 programs (29%) that indicated they did not use GRE scores.

For the Miller Analogies Test (MAT), the lowest reported score was 29 and the highest was 80. The MAT program means ranged from 39 to 72 and the MAT sample mean was 47 (Table I). There were 18 programs (47%) that did not require or use the MAT.

The overall GPA scores ranged from 2.39 to 4.0 and overall GPA program means ranged from 3.0 to 3.78. The overall GPA sample mean was 3.32. Science GPAs ranged from 1.0 to 4.0. The program means for science GPA ranged from 2.55 to 3.73 and the science GPA sample mean was 3.20 (Table I).

The program means for years of critical care experience ranged from 1.5 to 9 years with a sample mean of 5 years. The range for individual students was from 2 months to 22 years of critical care experience (Table I).

The survey revealed that 54% of students came from surgical intensive care units. This was followed by 18% from medical intensive care units and 9% from postanesthesia care units (Figure 1). A total of 81% of students were Advance Cardiac Life Support certified and 48% were certified Critical Care Registered Nurses.

The most commonly identified prerequisite courses for entry into a GNAEP were organic/biochemistry, pharmacology, pathophysiology, and statistics. Six programs (16%) indicated they did not require any prerequisite courses. Two programs (5%) indicated they only required equivalents to a baccalaureate degree in nursing (Table II).

All 38 programs required references, 37 (97%) required interviews, and 26 (68%) required essays.

Finally, we examined how all of the above fac
Table I
Cumulative data

<table>
<thead>
<tr>
<th>Course</th>
<th>Student low</th>
<th>Student high</th>
<th>Low program mean</th>
<th>High program mean</th>
<th>Sample mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA</td>
<td>2.39</td>
<td>4.0</td>
<td>3.0</td>
<td>3.78</td>
<td>3.32</td>
</tr>
<tr>
<td>n</td>
<td>455</td>
<td>455</td>
<td>421</td>
<td>421</td>
<td>421</td>
</tr>
<tr>
<td>Science GPA</td>
<td>1.0</td>
<td>4.0</td>
<td>2.55</td>
<td>3.73</td>
<td>3.2</td>
</tr>
<tr>
<td>n</td>
<td>329</td>
<td>329</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Analytical scores</td>
<td>330</td>
<td>800</td>
<td>470</td>
<td>647</td>
<td>533</td>
</tr>
<tr>
<td>n</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>264</td>
</tr>
<tr>
<td>Quantitative scores</td>
<td>310</td>
<td>800</td>
<td>327</td>
<td>637</td>
<td>512</td>
</tr>
<tr>
<td>n</td>
<td>301</td>
<td>301</td>
<td>276</td>
<td>276</td>
<td>276</td>
</tr>
<tr>
<td>Verbal scores</td>
<td>300</td>
<td>760</td>
<td>426</td>
<td>625</td>
<td>510</td>
</tr>
<tr>
<td>n</td>
<td>301</td>
<td>301</td>
<td>276</td>
<td>276</td>
<td>276</td>
</tr>
<tr>
<td>Cumulative scores</td>
<td>N/A</td>
<td>N/A</td>
<td>1,227</td>
<td>1,887</td>
<td>1,555</td>
</tr>
<tr>
<td>n</td>
<td>N/A</td>
<td>N/A</td>
<td>264</td>
<td>264</td>
<td>264</td>
</tr>
<tr>
<td>MAT scores</td>
<td>29</td>
<td>80</td>
<td>39</td>
<td>72</td>
<td>47.4</td>
</tr>
<tr>
<td>n</td>
<td>96</td>
<td>96</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>Years of critical care</td>
<td>2 months</td>
<td>22 years</td>
<td>1.5 years</td>
<td>9 years</td>
<td>5.2 years</td>
</tr>
<tr>
<td>n</td>
<td>415</td>
<td>409</td>
<td>402</td>
<td>402</td>
<td>402</td>
</tr>
</tbody>
</table>

In this table, n equals the number of admitted students in the sample for that item. “Low” and “high” are the lowest and highest student scores among n. “Low program mean” and “High program mean” are the lowest and highest reported program means, respectively. “Sample Mean” is the weighted mean for the sample.

Table II
Prerequisite courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Programs</th>
<th>Percent sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic/biochemistry</td>
<td>25</td>
<td>68%</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>15</td>
<td>41%</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>12</td>
<td>32%</td>
</tr>
<tr>
<td>Statistics</td>
<td>12</td>
<td>32%</td>
</tr>
<tr>
<td>Baccalaureate degree in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nursing/none</td>
<td>8</td>
<td>22%</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>16%</td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
<td>11%</td>
</tr>
</tbody>
</table>

“Programs” equals the number of programs indicating the course was required. “Percent sample” equals “Programs” requiring respective coursework, divided by the 38 total responding programs. The “Other” category was provided for courses not listed on the survey; for this category, two programs listed research, two listed microbiology, and two listed physical assessment.

Table III
Rank order of eight selection criteria considered during the selection process

<table>
<thead>
<tr>
<th>Item</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall GPA</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Interview</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Science GPA</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Critical care (years)</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Standardized test scores</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Critical care (background)</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

“First,” “Second,” and “Third” refer to the number of times program directors ranked/selected the item as first, second, or third most considered during the selection process, respectively.

tors influence admission into a GNAEP. To accomplish this we asked program directors to rank, in order, the three factors considered most in the selection process. Among these, overall GPA was chosen most often, followed by interview performance, science GPA, and years of critical care experience. However, program directors selected interview performance the greatest number of times as the first most considered factor (Table III).

As an incidental finding, a mean acceptance rate of 22% was calculated by dividing total student admissions (457) by total applicants (2,044) among 37 GNAEPs. This yielded an average of 55 applicants and 12 admissions per program, or a
mean acceptance ratio of 4.5:1. The number of admissions per program ranged from 3 to 36 and individual program acceptance rates ranged from 8% to 89%.

Discussion

Minimum requirements to enter a GNAEP are a baccalaureate degree, 1 year in an acute care environment, and usually a minimum GPA of 3.0. Our survey revealed that an average accepted student into a GNAEP has the following characteristics.

- An overall GPA of 3.3.
- A science GPA of 3.2.
- A cumulative GRE of 1,555 or MAT of 47.
- Five years of critical care nursing experience in a surgical intensive care unit with ACLS certification.
- Organic/biochemistry and pharmacology courses.
- Interviews well.

The above seems to indicate that the average GNAEP student surpasses minimum admission requirements, especially in the area of critical care experience. However, these minimums are not consistently met. For example, the minimum requirement for acute care years of experience is 1 year, but the lowest accepted student had 2 months. This may be explained by an individual having had previous experience as an associate's degree or diploma registered nurse.

Studies have found overall GPA, science GPA, and years of experience as predictive of performance on national nursing licensure examinations. Zaglaniczny found that the science GPA students attained during their nurse anesthesia education accounted for 24% of the variance in the overall score on the national certification examination for CRNAs. This study found that program directors highly considered overall GPA and science GPA. However, they also selected interview performance the greatest number of times as the most considered factor (Table III). To date, no research has been done to establish the predictability of this subjective measure with successful completion of a GNAEP.

Further investigation may be needed on the predictability of standardized test scores to success on the national certification examination. Another area that may warrant investigation is whether differences exist in the admission qualifications among the various degree types of GNAEPs.

Limitation

A limitation of this study is the inability to use the data as a predictor for selection or acceptance into a GNAEP. This is due to the lack of data from applicants who were not accepted for admission.

Summary

All nurse anesthesia educational programs are to offer master's degrees by 1998. A survey was prepared to identify the qualifications of current accepted students and GNAEP admission requirements. Based upon the responses of program directors, a profile of accepted applicants was established for the GRE, MAT, overall and science GPA, as well as other qualifications. Admission requirements of GNAEPs were also identified to include a ranking of factors considered most in the selection process. This survey revealed that minimum requirements for entry into a GNAEP were surpassed by the average admitted student.

REFERENCES

AUTHORS

2nd Lt George Haritos, RN, BSN, USAF, NC, is currently a student of the Wilford Hall Medical Center Critical Care Achievement Program with the U.S. Air Force, stationed at Lackland Air Force Base, Texas. He received his BSN from the University of Texas Health Science Center at San Antonio in 1993.

Scott H. Shumway, RN, BSN, is currently a nurse anesthesia student at Baylor College of Medicine, Houston, Texas. He received his BSN from the University of Texas Health Science Center at San Antonio in 1993.

Maj Paul N. Austin, CRNA, MS, USAF, NC, is a 1985 graduate of the U.S. Navy Nurse Corps/George Washington University Nurse Anesthesia Program. He received a master of science degree from the State University of New York at Buffalo School of Nursing in 1990. Currently, he is the assistant program director of the U.S. Air Force Nurse Anesthesia Program.

Col Wayne E. Ellis, CRNA, PhD, USAF, NC, is a 1970 graduate of the U.S. Army Nurse Anesthesia Program and received his PhD from Texas A&M University in 1990. Colonel Ellis is currently the director of the U.S. Air Force Nurse Anesthesia Program.

ACKNOWLEDGMENTS

This project would have been impossible to complete without the support and guidance of the following key individuals. Lt Col Chris Gray, CRNA, MSN, USAF, NC, was our mentor at the start of this endeavor. His guidance and skill allowed us to define our objectives and put together our project. The San Antonio Chapter of the AACN and Chris Bearden (past president) provided us with the financial support to conduct this project.

The opinions stated in this project are the authors' alone and do not reflect the official opinions of the U.S. Air Force or the Department of Defense.
In the PACU, fewer outpatients experienced nausea, fewer experienced vomiting . . .

. . . with MIVACRON and spontaneous recovery vs. those reversed with neostigmine and glycopyrrolate.

Patients were adult females undergoing outpatient tubal ligation. Anesthesia was induced with fentanyl and thiopental and maintained with isoflurane and N₂O/O₂.

From Ding et al. Anesth Analg. 1994;78:450-454

MIVACRON® Injection
2 mg/mL
(mivacurium chloride)

Think Rapid, Spontaneous Recovery From The Start

MIVACRON is contraindicated in patients known to have an allergic hypersensitivity to mivacurium chloride or other benzylisoquinolinium agents. Please see brief summary of prescribing information on adjacent page.
MIVACRON® Injection
MIVACRON® Premixed Infusion
(mivacurium chloride)

Brief Summary
This drug should be administered only as adequately trained individuals familiar with its actions, characteristics, and hazards.

INDICATIONS AND USAGE: MIVACRON® is a short-acting neuromuscular blocking agent indicated for inpatients and outpatients, and is contraindicated for use in children, to facilitate tracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation.

CONTRAINDICATIONS: MIVACRON® is contraindicated in patients known to have an allergic hypersensitivity to mivacurium chloride. It should not be administered in the presence of known severe allergies or hypersensitivity to benzyl alcohol.

WARNING: MIVACRON® should be administered in carefully adjusted dosage by or under the supervision of experienced clinicians who are familiar with its actions, characteristics, and hazards. To avoid the risk of overdose and to prevent inadequate neuromuscular block, the dosage should be closely monitored by clinical and electromyographic techniques.

MIVACRON® has no known effect on consciousness, pain threshold, or cerebellum to avoid damage to the patient. Neuromuscular block should not be induced in unanesthetized patients.

MIVACRON® is metabolized by plasma cholinesterases and should be used with great caution, if at all, in patients known to be or suspected of being homozygous for the atypical plasma cholinesterase gene.

MIVACRON® injection and MIVACRON® Premixed Infusion do not contain benzyl alcohol. It may be used in patients who have renal, liver or other organ impairment unless the extent of impairment is unknown.

Multiple dose vials of MIVACRON contain beryllium alcohol. In newborn infants, beryllium alcohol has been associated with an increased incidence of neurological and other complications which are sometimes fatal. Single-use vials and MIVACRON® Premixed Infusion do not contain beryllium alcohol.

PRECAUTIONS:
General: Although MIVACRON® (a mixture of three stereoisomers) is not a histamine release, the possibility of histamine release must be considered. Release of histamine is related to the dose and speed of injection. Caution should be exercised in administering MIVACRON to patients with a history of atopy and in patients who have a history of allergy to any cholinergic blocking agent.

Patients with a history of atopy should be observed closely for allergic manifestations. Patients with a history of asthma or chronic bronchitis should be observed closely for bronchospasm.

Be aware that patients with a history of atopy may be more likely to experience allergic reactions to MIVACRON.

Obese patients may be more likely to experience clinically significant transients in MAP than non-obese patients when the dose of MIVACRON is based on actual rather than ideal body weight. In obese patients, the initial dose should be at least 25% greater than that used in non-obese patients.

Neurovascular blockade may have a profound effect in patients with neuromuscular diseases (e.g., myasthenia gravis, Lambert-Eaton syndrome). In patients with a history of prolonged muscle weakness (e.g., myasthenia gravis, Lambert-Eaton syndrome), use of a peripheral nerve stimulator and a dooee not more than 0.010 to 0.000 mg/kg MIVACRON may be used to control the onset of neuromuscular block.

The use of MIVACRON in patients with any history suggestive of a greater sensitivity to the neuromuscular blocking effect of MIVACRON. In three such adult patients, a small dose of MIVACRON (0.03 mg/kg [approximately the ED50 in genotypically normal patients]) produced complete neuromuscular block for 26 to 90 minutes. Two of these patients have been reported to have a small dose of MIVACRON (0.015 mg/kg) which was given without prior histamine release, and one patient had a small dose of MIVACRON (0.03 mg/kg) which was given without prior histamine release.

As with succinylcholine, patients homozygous for the atypical plasma cholinesterase gene (1 in 2500 patients) are extremely sensitive to the neuromuscular blocking effect of MIVACRON. In three such adult patients, a small dose of MIVACRON (0.03 mg/kg) produced complete neuromuscular block for 26 to 90 minutes.

Patients with a history of atopy should be observed closely for allergic manifestations. Patients with a history of asthma or chronic bronchitis should be observed closely for bronchospasm.

Neurovascular blockade may have a profound effect in patients with neuromuscular diseases (e.g., myasthenia gravis, Lambert-Eaton syndrome). In patients with a history of prolonged muscle weakness (e.g., myasthenia gravis, Lambert-Eaton syndrome), use of a peripheral nerve stimulator and a dosage of not more than 0.010 to 0.000 mg/kg MIVACRON may be used to control the onset of neuromuscular block.

The use of MIVACRON in patients with any history suggestive of a greater sensitivity to the neuromuscular blocking effect of MIVACRON. In three such adult patients, a small dose of MIVACRON (0.03 mg/kg [approximately the ED50 in genotypically normal patients]) produced complete neuromuscular block for 26 to 90 minutes.

The use of MIVACRON before succinylcholine to attenuate some of the side effects of succinylcholine has not been studied.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

Isoflurane and enflurane (administered with nitrous oxide/oxygen to achieve 1.25 MAC) decrease the ED50 of MIVACRON by 20% to about 35%.

To avoid the risk of overdose and to prevent inadequate neuromuscular block, the dosage should be closely monitored by clinical and electromyographic techniques.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.

There are no clinical data on the use of MIVACRON with other nondepolarizing neuromuscular blocking agents.
Sometimes the situation just calls for more than the resources at hand.

You've done it before - spent countless hours, days, even weeks trying to maintain staffing levels to avoid interruption to surgery schedules. If your time could be put to better use, then it's time you put United Anesthesia Associates on the job.

Hospitals are finding nurse anesthetists to be a valuable option in balancing staffing costs. At United, we focus exclusively on providing locum tenens and full-time CRNAs to cover vacancies due to expansions, personal or medical leaves and vacations. And we do it at rates that are very sensible and justifiable.

Call 800 334-8320 and get the tools you need to keep your facility operating at full speed.

United Anesthesia Associates, Inc.
Serving Facilities Nationwide Since 1979
The Changing Practice of Anesthesia
September 14–17, 1995
San Francisco Grand Hyatt
Optional programs:
Fiberoptic Airway Management Workshop
Transesophageal Echocardiography

For further information, please contact:
Michael DeLane
Department of Anesthesia
University of California, San Francisco
521 Parnassus Avenue, Box 0648
San Francisco, CA 94143-0648
(415) 476-8964

DEPARTMENT OF ANESTHESIA
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO
The Changing Practice of Anesthesia has been approved by the office of CME for 17 credit hours in Category 1. The Fiberoptic Airway Management Workshop is approved for 8 credit hours in Category 1. The Transesophageal Workshop is approved for 7.5 credit hours in Category 1.
The Changing Practice of Anesthesia is approved by the American Association of Nurse Anesthetists for 20 CE Credits and the Fiberoptic Workshop is approved for 9 CE credits.
THE NEW SHAPE
OF AIRWAY
MANAGEMENT

The Laryngeal Mask Airway (LMA), increases
your options in airway management. The LMA is designed
as a hands-free replacement for the face mask in adult and
pediatric patients. More secure than a face mask and less
invasive than intubation, the LMA rests in the hypopharynx
and forms a low-pressure seal around the outside of the
laryngeal inlet. As the LMA does not invade the vocal cords
or trachea, it is well tolerated and has a low incidence of
post-op sore throat. Insertion is simple and rapid with
no need for laryngoscopy or neuromuscular
blockade. Six sizes allow usage in patients
from neonates to large adults.
Anesthesia

Certified Registered Nurse Anesthetists answer your questions

Is anesthesia safe?
Statistics show that anesthesia today is safer and more effective than ever before. New technologies, extensive specialty training and high professional standards have made the administration of anesthesia one of the safest aspects of a surgical or obstetrical procedure.

Who administers anesthesia?
In the majority of cases, anesthesia is administered by a certified registered nurse anesthetist (CRNA). CRNAs work with your surgeon, dentist or podiatrist, and may work with an anesthesiologist (physician anesthetist). CRNAs are advanced practice nurses with specialized graduate-level education in anesthesiology. For more than 100 years, nurse anesthetists have been administering anesthesia in all types of surgical cases, using all anesthetic techniques and practicing in every setting in which anesthesia is administered.

Are there different types of anesthesia?
There are three basic types of anesthesia: general anesthesia produces a loss of sensation throughout the entire body; regional anesthesia produces a loss of sensation to a specific region of the body; and local anesthesia produces a loss of sensation to a small, specific area of the body. A pre-operative interview with your anesthesia professional will determine which type is best for you.

Will a nurse anesthetist stay with me throughout my surgery?
The nurse anesthetist stays with you for the entire procedure, constantly monitoring every important function of your body and individually modifying your anesthetic to ensure your maximum safety and comfort.

Each year, more than 26 million people in the United States undergo some form of medical treatment requiring anesthesia. Anesthesia, in the hands of qualified professionals like certified registered nurse anesthetists, is a safe and effective means of alleviating pain during nearly every type of medical procedure. If you or someone you love is facing surgery requiring anesthesia, ask to meet with your anesthesia provider to find out all you can before undergoing the procedure.

To get a free brochure on the anesthesia process, call the American Association of Nurse Anesthetists at 1-800-543-AANA.

American Association of Nurse Anesthetists
222 South Prospect Avenue, Park Ridge, Illinois 60068-4001
The third AANA Journal Fellowship Program will be held at the AANA Foundation Learning Center in the AANA Building on October 21–22, 1995. Fifteen individuals will be selected for participation in this weekend program (all day Saturday and Sunday until noon).

Each participant will receive a $1,000 fellowship to cover travel expenses, two nights' lodging, and miscellaneous expenses. A working group dinner will be hosted Saturday evening. This and all other meals will be included in the program.

Develop Your Writing Skills

The program will encompass a broad range of lectures, small-group and one-on-one interactions designed to initiate and promote clinical and scientific writing. Participants will learn to develop themselves as writers and confidently navigate the ins and outs of publishing for books and journals.

All applicants must come to the program with a substantive “work in progress” which might take the form of an unpublished thesis, abstract, a paper requiring revisions, or a project idea which is carefully described in written form.

Featured Speaker

Elizabeth M. Tornquist, MA, is the primary fellowship facilitator. A lecturer in the School of Nursing and the School of Public Health at the University of North Carolina at Chapel Hill, Ms. Tornquist has authored and coauthored numerous articles on writing and nursing research, as well as books on the subjects of nursing research; elder care; and how to think, read, and write effectively. She is a graduate of Duke University, Durham, North Carolina, and she received her master's degree in English from the University of Chicago.

Scientific Editors Participate

AANA Journal scientific editors will provide an AANA Journal focus to the program. At the second workshop on December 3–4, 1994, Chuck Biddle, CRNA, PhD, scientific editor, and John Aker, CRNA, MS, associate scientific editor, presented a variety of material based upon their experience with the Journal. Associate scientific editors, CDR E. Jane McCarthy, CRNA, PhD, USPHS, and John Nagelhout, CRNA, PhD, were also available to provide input and answer questions.

Selection Process

Applications from academic, clinical, administrative, and military CRNAs are invited. In selecting the fellowship participants, the AANA Journal Editorial Advisory Committee will give attention to the following criteria:

1. Motivation for pursuing the Scientific Writing Fellowship Program.
2. Geographic location of applicant—a geographically diverse group of participants is desirable.
3. Member in good standing with the AANA.
4. A desire to publish in the clinical, scientific literature.

Complete Your Application

To be considered, applications must include all of these items:

1. A typed cover letter indicating a desire to be a candidate for the program. The letter should also include:
 A. Motivation for participation in the program.
 B. The current position held by the applicant, as well as a statement regarding the applicant's professional goals.
 C. A current address and daytime telephone number.
2. A one-page double-spaced writing sample that describes your “work in progress.”
3. A curriculum vitae.
4. A copy of the applicant's AANA Membership card.

Don't Miss the Deadline

Applications should be postmarked by September 1, 1995. Applicants will be notified of their acceptance by October 2. Please send your application to:

AANA Journal Fellowship Program,
AANA, 222 South Prospect Avenue, Park Ridge, IL 60068-4001
Attn.: Chuck Biddle, CRNA, PhD, AANA Journal Scientific Editor
If you have any questions concerning this program, contact Sally Aquino at (708) 692-7050, ext. 313.
Providing Products for Anesthesia and Critical Care

Suprane®
-desflurane

Brevibloc®
-(esmolol HCl)

REVEX™
-(nalmefene HCl injection)

dizac™
-Diazepam Emulsified Injection CIV
For IV Administration Only

Forane®
-(isoflurane, USP)

Ethrane®
-(enflurane, USP)

Enlon-Plus™
-(edrophonium chloride, USP & atropine sulfate, USP) Inj.

Enlon®
-(edrophonium chloride, USP)

Dedicated to Anesthesia and Critical Care

OHMEDA
©1995 Ohmeda Pharmaceutical Products Division Inc

110 Allen Road
PO Box 804
Liberty Corner, NJ 07938 0804
1 800 ANA DRUG