Comparison of oral and intramuscular lorazepam as a surgical premedicant on gastric pH and volume

Maj. HENRY J. WALKER, CRNA, MS, USA, AN
Fort Lewis, Washington

The purpose of this study was to determine whether lorazepam or its method of administration had an effect upon the volume and/or the acidity of gastric contents. In addition, the effectiveness of lorazepam was also evaluated.

Utilizing an experimental, randomly assigned and double blind design, 60 adult surgical patients requiring general anesthesia and endotracheal intubation were randomly assigned into one of three groups: Group I received oral and intramuscular placebos; Group II received oral lorazepam and intramuscular placebos; and Group III received oral placebos and intramuscular lorazepam. Pre-treatment and post-treatment measurements of blood pressure, pulse and respirations were recorded. In addition, the effectiveness of lorazepam was evaluated by means of a combination of a patient self-assessment scale and observation techniques. After a standard anesthetic induction and intubation, gastric contents were suctioned. The gastric aspirate was measured in ml and in pH units with a pH meter.

This research concluded that patients receiving lorazepam as a preoperative medication demonstrated an association with decreases in gastric acidity and volume. There were no significant differences detected in pH or volume when the oral route was compared with the intramuscular route. In addition, lorazepam, in both the oral and intramuscular preparations, demonstrated decreases in restlessness and increases in slurred speech.

The administration of medication to patients prior to the onset of anesthesia and surgery is a well documented practice that dates back more than a century. This practice is presently employed by most practitioners in anesthesia.

The goals of premedication vary among individual practitioners and clinical situations. One of the most common goals of premedication is the relief of anxiety. Other goals include alterations of psychological and physiological parameters. In order to achieve some of these effects, there exist numerous drugs and drug classifications which may be administered alone or in combination to produce single, combined or synergistic effects.

Physiologic parameters that concern anesthetists include the quality and quantity of gastric secretions. These secretions are of interest because of an increased potential for pulmonary aspiration during the anesthetic process, possibly resulting in severe pulmonary damage as originally described by Mendelson. Although specific levels are not
known, it is generally accepted that an increase in the acidity and volume of pulmonary aspirate will lead to greater pulmonary insult. This insult may range from a minor and localized atelectasis to a profound morbidity leading to death. Such concerns may influence the choice of a particular premedicant as well as its route of administration.

Lorazepam, an anxiolytic agent of the benzodiazepine family, is an accepted drug for use as a surgical premedicant. To date, published reports are not available with regard to the gastric effects of preoperative lorazepam.

Materials and methods

Prior to beginning the study, approval was obtained from appropriate committees at the State University of New York at Buffalo's School of Nursing and the Veterans Administration Medical Center in Buffalo, New York, both of which were affiliated with this research. After detailed explanation of the study and its procedure, all participants signed an informed consent.

This research utilized an experimental, randomly assigned and double blind design. A total of 60 patients were included in the study. There were three groups, each consisting of 20 participants: Group I received oral and intramuscular placebos; Group II received oral lorazepam and intramuscular placebos; and Group III received oral placebos and intramuscular lorazepam.

Patients eligible to participate in the study were adults requiring surgery, general anesthesia and endotracheal intubation. There were numerous exclusion criteria which eliminated patients presenting with any condition that had the potential to alter gastric contents. These criteria included the physical and psychological state of the patient, the nature of the surgical procedure, and/or pharmacologic preparations that the patient may have been receiving.

All patients in the study were required to have routine hematological and chemistry studies. In addition, patients' age, height, weight, vital signs and effectiveness of treatments were recorded.

On the morning of surgery, prior to the administration of medications, control vital signs consisting of blood pressure, pulse and respiratory rate were obtained. After vital signs were obtained, baseline data to determine the effectiveness of premedication was obtained by a method similar to that described by Forrest. This method consisted of the author obtaining the patient's own estimate of his or her degree of sleepiness, apprehension, confusion, restlessness, headache, dizziness, nausea, dry mouth and vomiting. The author then estimated the patient's degree of sweating and slurred speech. These 11 items, each scored on a scale of 0 (none) to 9 (most severe), became the baseline data for examining the effects of the premedication. The 11 variables of this scale were consistently obtained in the same manner and sequence.

Treatments were administered approximately two hours prior to induction. Lorazepam doses for the intramuscular and oral routes were 0.05 mg/kg rounded off to the nearest 0.5 mg. Oral medications and placebos were administered with 30 ml water. Normal saline was utilized for the intramuscular placebo.

Approximately 90 minutes after premedication the patient was transferred to a designated study area in the operating room where blood pressure, pulse, respiratory rate and effectiveness scale were repeated.

All patients received a standard anesthetic induction consisting of fentanyl as indicated, 5 mg tubocurarine, 3.5 mg/kg thiopental, 1-1.5 mg/kg succinylcholine, endotracheal intubation and isoflurane, enflurane or halothane with nitrous oxide and oxygen.

After securing the endotracheal tube, an orogastric tube was inserted into the stomach via the oral cavity. Position was verified by insufflation of 30 ml air and auscultation. Gastric contents were suctioned with the patient in the supine, slight Trendelenburg, modified right and left lateral positions. Immediately after final suction, the gastric tube was removed. Volume was measured in ml with a graduated syringe. Acidity was measured in pH units with an Orion Research Digital Ionalyzer 501. This pH meter was utilized for all determinations and was calibrated on a daily basis by the author.

To ascertain effects of premedication both within and among groups, the data regarding gastric pH was analyzed utilizing a one-way analysis of variance (ANOVA). After differences were detected among groups, planned pairwise comparisons were made. When assumptions for this statistical procedure were violated, as in the case of the volume data, nonparametric tests were utilized. Data relating to the effectiveness scale were analyzed by the Wilcoxon matched-pairs signed-ranks test.

Results

To support the assumption of homogeneity between groups prior to testing, numerous statistical procedures were employed on pre-treatment vari-
ables. These analyses revealed no statistically significant difference between groups with respect to laboratory data, vital signs or physical characteristics such as age, height and weight. Descriptive grouped data of pre-treatment variables is contained in Table I.

Effectiveness scale. Group I (control group) received the placebo pill and placebo injection. This group demonstrated a statistically significant decrease ($p < 0.01$) in the level of restlessness as perceived by the patient. An attempt to explain this finding may rest in the possibility that the patient actually experienced a placebo effect from the treatment or the patient demonstrated a Hawthorne-like effect. The Hawthorne effect refers to a change in behavior of subjects because of their awareness of their participation in a study. This is a potential threat to both internal and external validity. Minimizing this threat is the presence of a design which includes a placebo group and a double blinded technique. The pre-treatment and post-treatment scores for the remaining 10 variables in Group I did not demonstrate any statistically significant differences.

Group II (oral lorazepam) demonstrated statistically significant differences with three variables. The level of sleepiness, as perceived by the patient, was increased ($p < 0.005$). Restlessness, as perceived by the patient, was decreased ($p < 0.005$). A statistically significant increase was also noted with slurred speech ($p < 0.005$). The remaining eight variables of Group II did not demonstrate any significant differences.

Group III (intramuscular lorazepam) demonstrated statistically significant differences with two variables. The level of sleepiness, as perceived by the patient, was increased ($p < 0.005$). The level of slurred speech, as evaluated by the author, was significantly increased ($p < 0.005$). The remaining nine variables of Group III did not demonstrate any significant differences. It is of interest to note that none of the groups reported changes or decreases with regard to their levels of anxiety. This latter finding was consistent with the findings of Forrest, who was also unable to demonstrate a significant effect upon the reduction of patients’ preoperative anxiety when six intramuscular premedicants were analyzed.

The significant grouped data results for effectiveness of the treatments is presented in Table II.

pH and volume data analysis. After the gastric aliquot was obtained it was measured for acidity in pH units. A summary of the mean pH data is presented in Figure 1. An ANOVA of this data with planned comparisons demonstrated a statistically significant difference ($p = 0.01$) in pH values when either the intramuscular or the oral route was compared to placebo. This ANOVA failed to demon-

Table I
Descriptive data of age, height, weight and pre-treatment vital signs

<table>
<thead>
<tr>
<th>Group</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>56</td>
<td>51</td>
<td>61</td>
</tr>
<tr>
<td>Mean heights (inches)</td>
<td>70</td>
<td>70</td>
<td>69</td>
</tr>
<tr>
<td>Mean weight (kg)</td>
<td>86</td>
<td>77</td>
<td>79</td>
</tr>
<tr>
<td>Pre-treatment pulse (bpm)</td>
<td>74</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>Pre-treatment respirations (bpm)</td>
<td>18</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Pre-treatment systolic (mmHg)</td>
<td>128</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Pre-treatment diastolic (mmHg)</td>
<td>80</td>
<td>80</td>
<td>77</td>
</tr>
</tbody>
</table>

Table II
Significant results, effectiveness scale

<table>
<thead>
<tr>
<th>Group</th>
<th>Method</th>
<th>Effect</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>(Control)</td>
<td>Restlessness</td>
<td>↓ (p < 0.01)</td>
</tr>
<tr>
<td>Group II</td>
<td>(PO)</td>
<td>Sleepiness</td>
<td>↑ (p < 0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restlessness</td>
<td>↓ (p < 0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slurred speech</td>
<td>↑ (p < 0.005)</td>
</tr>
<tr>
<td>Group III</td>
<td>(IM)</td>
<td>Sleepiness</td>
<td>↑ (p < 0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slurred speech</td>
<td>↑ (p < 0.005)</td>
</tr>
</tbody>
</table>
strate a significant difference between the oral and intramuscular groups with respect to their effect upon gastric pH.

Immediately after the gastric fluid aliquot was obtained, it was measured in ml. A summary of the mean volume data is presented in Figure 2. A Kruskal-Wallis ANOVA demonstrated an association of decreased gastric volume ($p = 0.066$) when lorazepam was administered either orally or intramuscularly. There was no difference detected between the oral and intramuscular groups with respect to their effect upon gastric volume.

The descriptive grouped data of gastric pH and volume is contained in Table III.

Discussion

Conclusions. It is concluded that patients receiving lorazepam demonstrated an association with decreases in gastric acidity and gastric volume when compared to placebos. Furthermore, it is concluded that the oral administration of lorazepam as a premedicant does not increase gastric volume when compared to intramuscular lorazepam. In effect, this should decrease the potential for pulmonary damage should aspiration occur. These conclusions parallel those of Hjortso and Mondorf10 who compared intramuscular and oral diazepam and their effects upon gastric pH and volume. The findings of this study also support the conclusions of Murie and MacKay,11 who demonstrated that pentagastrin-stimulated gastric secretion was significantly reduced in patients pretreated with lorazepam.

Implications for practice. Seventy five percent (15/20) of the patients in the control group had gastric pH values less than two. This value is considered to be an extremely dangerous level that has the potential for severe pulmonary damage should aspiration occur. The percentage of low gastric pH values experienced in this control group is consistent with other control groups in similar studies. These findings may suggest a rethinking with respect to the pharmacological preparation of patients about to undergo anesthesia and surgery.

Presently, in the author's institution, virtually...
all patients presenting for anesthesia and surgery are pharmacologically premedicated with oral ranitidine. This H₂ receptor antagonist is administered prophylactically to minimize the extent of pulmonary insult should aspiration occur.

Because of its long half-life (15 hours), lorazepam may not be an appropriate choice for patients receiving outpatient anesthesia. Lorazepam may be more appropriately utilized in patients undergoing lengthy procedures and/or patients whose postoperative plans include mechanical ventilation.

Recommendations for further research. Patients frequently receive premedicant injections which may be uncomfortable and at times painful. The rationale as to why patients receive intramuscular premedicants is not always clear. Further research with regard to the concepts of the efficacy and safety of oral premedicants should be investigated.

Finally, most patients arrive in the surgical suite with dangerously high gastric acid levels. Worth considering is the question of whether anesthetists should pharmacologically treat more or even all patients in order to reduce their gastric acidity. In addition, since a controlled preoperative environment is not present in outpatient anesthesia, an investigation examining whether anesthetists should pharmacologically treat these patients to alter their gastric contents might be valuable.

REFERENCES

AUTHOR

Maj. Henry J. Walker, CRNA, MS, USA, AN, is a graduate of the University of California at San Francisco, where he received his BSN. In 1981, he graduated from the Anesthesiology for ANC Officers Course at Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia. He is a 1986 graduate of the State University of New York at Buffalo, where he received his MS in nursing. Presently, Maj. Walker is the assistant director, School of Anesthesiology for ANC Officers, Madigan Army Medical Center, Fort Lewis, Washington.

The opinions or assertions presented in this article are those of the author and are not to be construed as official or as reflecting the views of the Department of Defense or the United States Army.
1. Most drugs are weak acids or weak bases; consequently, they are in equilibrium between their charged and uncharged forms. Because the passage of uncharged molecules through a membrane lessens their number, the equilibrium responds to this stress of a change in concentration by shifting so there is more of the uncharged form available. A charged portion is needed to dissolve in the circulating blood, ECF and ICF.

2. This patient has chronic respiratory acidosis that is compensated as expected with an increase in the HCO₃⁻ of 4 meq/L for every 10 mmHg increase in the PCO₂. The oxygen content is satisfactory. No effort should be made to lower the PCO₂ during the anesthesia.

3. The K⁺ needs to be checked. A deficit caused by the diuretic may be contributing to, or causing, her metabolic alkalosis, or decrease in H⁺. If there is hypokalemia, after satisfactory replacement of K⁺, the H⁺ should also increase. Surgery probably may take place. Because of the edema mentioned so briefly, it must be assumed that there are other problems. The increased PCO₂ is as expected and is the “normal” as long as the HCO₃⁻ is elevated as described. It should not be reduced as long as the PO₂ remains satisfactory.

4. The metabolic compensation is as expected for acute respiratory alkalosis. When his pain is relieved his acid/base condition will be normal.

5. This patient has a chronic respiratory alkalosis. The psychoneurotic patient can hyperventilate chronically. The metabolic compensation is as expected, that is there is an approximate 4 meq/L decrease in the HCO₃⁻ for every 10 mmHg decrease in the PCO₂. If the practitioner allows the PCO₂ to increase to 40 mmHg pressure under anesthesia, the bicarbonate will increase the 1 meq/L that occurs in the acute acidic respiratory change and the HCO₃⁻ will be 21 meq/L. The pH will then be 7.34, very slightly acidotic, as compared to the former 7.45 which is very slightly alkalotic. This patient is used to this latter internal environment and to change her temporarily is undesirable.
CRNA
LOOKING FOR A CHALLENGE
St. Joseph's Hospital, a 420 bed Regional Trauma center affiliated with Creighton University Medical Center in Omaha, NE, is seeking a licensed or licensure eligible CRNA to join our staff of 12 nurse anesthetists. Our CRNA’s participate in 7,000 cases per year including major trauma, renal transplants and open heart. We offer an excellent salary based on previous experience as well as complete benefits package, including a $2,000 Recruitment Bonus and 100% paid relocation expenses.

Omaha, NE, a major Midwesten metropolitan area, with a population of over 607,000 provides the finest educational and cultural center available in the midwest.

Please submit resume or contact: Vicky Timmerman:

AMI Saint Joseph Hospital
At Creighton University Medical Center
601 North 30th Street
Omaha, NE 68131
402/449-4460
An AMI Healthcare Center
An Equal Opportunity Employer

Illinois Masonic Medical Center Presents
ANNUAL MIDWEST PEDIATRIC ANESTHESIA MEETING
AND
ANNUAL CHICAGO OBSTETRICAL ANESTHESIA MEETING
April 14, 15, 16, 17, 1988 • Holiday Inn, Chicago City Centre

FACULTY-DOCTORS
Bikhazi, Brandom, Dierdorf, Gregory, Hannallah, Klowden,
Lichtor, Lang, Salem, Steward
Abouleish, Albright, Clark, Curran, Heyman, Joyce III, Lavine,
Newman, Nimmagadda, Reisner

Pediatric Anesthesia Topics:
• Resuscitation of the Newborn
• Neonatal Respiratory and Cardiovascular Physiology
• Temperature Regulation in the Neonate
• Pediatric Pharmacology
• Anesthetic Risks in Infants
• Preoperative Preparation of the Surgical Preterm Infant
• Anesthesia for the Infant Ages One Month to One Year
• Fluids and Electrolyte Therapy—The Neonate, Infant and Child
• Anesthetic Problems in the Preterm Infant
• Neonatal Surgical Emergencies
• Neurumocutaneous Blocks, Paralysis in Pediatric Anesthesia
• Induction and Sedation Techniques for Infants and Children
• Group and Epidote
• Pediatric Cardiopulmonary Resuscitation
• Anesthesia for the Child with Cardiac Disease for Non-Cardiac Surgery
• Anesthesia for Patent Ductus Ligation
• Pulmonary Dysfunction in CHD
• Anesthesia for Correction of Cardiac Defects
• Monitoring the Pediatric Cardiac Patient
• Hypothermia for Correction of CHD
• Should Succinylcholine be used in Pediatric Anesthesia?
• Should Dextrose be Given intra-operatively?
• Should Postoperative Pain Relief be Utilized Routinely?
• Are There Uses for High Frequency Ventilation in Children?
• Should Pulse Oximeters be used Routinely in Pediatric Anesthesia?
• Should Carboxyhemoglobin or Mass Spectrometry be used Routinely?
• Should the Ex-premie Graduate be done as an Outpatient?
• Blood Replacement in the Surgical Pediatric Patient—Current Concepts
• Hypovolemic Anesthesia in Children—Current Concepts
• Malignant Hyperthermia—Current Concepts
• Anesthesia for the Pediatric Trauma Patient
• Anesthesia for Liver Transplant
• Anesthesia for the Child with Cold and URI
• Anesthesia for Foreign Bodies in the Airways
• Open Eye Injuries after a Recent Meal

Obstetrical/Anesthesia Topics:
• Resuscitation of the Newborn
• Principles of Perinatal Pharmacology
• Local Anesthetics—How Do They Work?
• Obstetrical Anesthesia and Uterine Blood Flow
• Rational Choice of Local Anesthetics for Obstetrical Anesthesia
• Choice of Vasopressors in Obstetrical Anesthesia
• Drug Interactions: Obstetric Medication and Anesthetic Agents
• Non-Obstetric Surgery in the Pregnant Patient
• Use of Epidural and Intrathecal Opiates
• Narcotic Agonists, Antagonists, and Receptors
• How to Avoid Litigation in Obstetrical Anesthesia
• Anesthetic Implications of Maternal Physiologic Changes
• Local Anesthetic Toxicity—Mechanisms, Controversies, Treatment
• Effect of Epidural Blocks on Fetal Well Being
• How to Make Spinal Anesthesia Safe
• Effect of Epidural Anesthesia on the Progress of Labor
• Continuous Infusion Epidural Blocks
• Management of the Wet Tap
• Anesthesia for Cesarean Section
• What is Our Role in Anesthetic Management of the Patient with Pregnancy-Induced Hypertension?
• Anesthetic Management of the Asthmatic Obstetric Patient
• Contending with Anomalous Fluid Embolism
• What is a "Test Dose" and Do You Need a CV Monitor?
• Protection of the Fetus From Hypoxemia
• Anesthesia for Normal Delivery

For Information Contact:
Department of Anesthesiology, Illinois Masonic Medical Center, 836 W Wellington, Chicago, Illinois.
Telephone: 312/883-7035/7041. The courses are approved for 20 hours each, Category I.
HALOTHANE U.S.P
Produced by Halocarbon Laboratories, Inc.

- First Maker of Fluorinated Anesthetics in the U.S.A.
- Pioneer in Anesthetic Purity
- Lowest Price of Any Potent Anesthetic

HALOCARBON LABORATORIES, INC.
P.O. Box 833
Hackensack, NJ 07602
(201) 343-8703

Certified Registered Nurse Anesthetist

The Dartmouth-Hitchcock Medical Center anticipates an opening for a Certified Registered Nurse Anesthetist. We offer a competitive salary, attractive benefit package, and the opportunity to live and work in the heart of the Dartmouth-Lake Sunapee region in a rural college town. Experience desirable, but new graduates are welcome to apply. Please send curriculum vitae to:

Administrative Services
Hitchcock Clinic
2 Maynard Street
Hanover, NH 03756

An equal opportunity employer

GOLD COAST IN MORE WAYS THAN SUN

Florida's balmy breezes, beautiful beaches and year-round sunshine await the right applicants. Send CV to:

Anthony G. DiCarlo, Administrator
Anesthesia Associates
3856 Sheridan Street
Hollywood, Florida 33021

Or call, 305-987-5822.
It can't hurt.

Anesthesia Associates of Hollywood
NURSE ANESTHETIST

Centre Community Hospital, a 200-bed acute care facility has an opening for a CRNA. Located in State College, Penna., the home of the Pennsylvania State University, this position will complete our staff of five CRNAs and four Anesthesiologists.

Competitive salary with benefit program which includes family Health, Dental, and Prescription insurance, life and disability income protection, and hospital-paid pension plan.

Call for an appointment or send resume to:
Personnel Director
Centre Community Hospital
1800 E. Park Avenue
State College, PA 16803
(814) 234-6143

Equal Opportunity Employer

LITTLE ROCK, ARKANSAS

ARKANSAS ANESTHESIA, P. A. has a full-time position available for CRNAs or GRNAs to join our staff of 8 MDs and 29 CRNAs. Baptist Medical Center is a modern 750-bed acute care facility. We offer all surgical sub-specialties including open heart in our 17 ORs. Located in central Arkansas with excellent outdoor activities. Base salary — $3,498 per month — after 6 months. Highly competitive benefits package includes: Malpractice insurance, short & long term disability, health insurance with major health & dental coverage, medical reimbursement, substantial year end bonus, profit sharing plan — fully vested after 6 months, 4 weeks paid vacation — will increase after 2 years, 6 paid holidays, 5 days of paid professional leave, moving expense, paid weekend call, unused vacation & sick time may be reimbursed, no rotating shifts, & call every 24th day.

Send resume to
ARKANSAS ANESTHESIA, P. A.
9601 Lile Dr., Plaza A
Little Rock, AR 72205
ATTN: Mary Shenker, Chief CRNA
Phone: 501-227-9114

CRNA's

FLORIDA - Immediate openings for CRNAs to work our full time, 4 day/week schedule. FLASH!!! New salary structure now in effect. New graduates, $41,959 to start. Benefits include 29 personal leave days, free CEUs, 100% tuition reimbursement, 4 educational leave days, and health and life insurances. For immediate consideration, call collect at (305) 324-6611. Jackson Memorial Hospital, 1611 N.W. 12th Avenue, Miami, FL 33136. Equal Opportunity Employer.

NURSE ANESTHETISTS

St. Vincent Medical Center, a 635-bed teaching hospital, including a nurse anesthesia school, located in Toledo, Ohio, has full-time positions available for CRNAs.

Anesthesia in this progressive hospital is provided by a group of 9 Anesthesiologists and 16 CRNAs. We offer excellent benefits including:

- A pension and profit-sharing plan with full vesting after one year.
- Fully paid health insurance including dental and prescriptions.
- Fully paid short- and long-term disability.
- Compensation and time off for meetings.
- Tuition reimbursement.
- Competitive salary in the community.
- Opportunity to earn additional income.
- No on-call obligation.

Toledo is an energetic city on the shores of Lake Erie. Water sports, winter activities and numerous cultural activities including the symphony, opera, theater and one of the nation's ten best zoos are among Toledo's attractions. In addition, Toledo is a four-hour drive from Chicago and close to the recreational and educational activities of Michigan.

Toledo has its own university, it is home to the Medical College of Ohio, and Lourdes College. For prompt consideration, submit your resume to:
Associated Anesthesiologists of Toledo, Inc.
4427 Talmadge Road, Suite Q
Toledo, OH 43623

St. Vincent Medical Center
Equal Opportunity Employer
SAVE AN ENDANGERED SPECIES
JOIN THE CRNA'S
AT OUR MEDICAL CENTER.

As a regional tertiary care facility affiliated with Wake Forest University's School of Medicine, we currently are completing a $200 million expansion program. But, providing the best in health care takes more than the latest in technology and facilities - we need caring, well-educated Certified Registered Nurse Anesthetists like you.

To find out more about your career opportunities in one of America's most liveable cities, write or call Letha Huffman, NCBH Recruiter: NC Baptist Hospital; 300 S. Hawthorne Road; Winston-Salem, NC 27103; Telephone 919/748-4717.

North Carolina Baptist Hospital

Dunhill Means Medical Specialists

At Dunhill of Charlotte we have specialized in the personnel recruitment and placement of medical specialists for over 25 years. If you are searching for a new career challenge and opportunity, we would like to talk with you today!

We specialize in the placement of CRNAs. Our medical specialists can connect you with outstanding opportunities on all levels in the health care field across the United States. We have a network of over 300 affiliate offices coast to coast, therefore you'll find no restrictions as to the locations you choose to explore.

We are not asking you to make any commitment. There is never a fee with Dunhill of Charlotte, and all matters are held in strict confidence. Keep your career running in high-gear by letting Dunhill of Charlotte go to work for you today! Give us a call now, or send your resume to:

Jay D. Robinson, CPC
Medical Services Consultant
DUNHILL OF CHARLOTTE, INC.
5401 Carmel Road
Suite 107
Charlotte, N.C. 28226
1-800-438-2012
In North Carolina, call collect
(704) 542-0312

The Right Career Choice!

Geisinger Clinic

MANAGER
ANESTHESIA SERVICES

To manage and direct a department of 36 nurse anesthetists providing services to a broad spectrum of surgical specialists including cardiovascular, transplant, trauma, gynecologic, pediatric, neonatal and neurosurgery.

Geisinger Medical Center is the tertiary referral center for more than 2.5 million people in central and northeastern Pennsylvania. It is also a Level I trauma center. This 569 bed teaching and referral center is experiencing over 400,000 outpatient visits, 20,000 admissions and 12,000 surgical procedures annually.

Successful candidate will be a certified CRNA and will preferentially bring a Master's degree in anesthesia or management. A broad and in-depth knowledge of anesthesia services and equipment, and at least 5 years supervisory experience, preferably at the department head level, with emphasis on leadership, problem-solving and communication also desired.

Equal Opportunity Employer M/F/H

Geisinger

Wake Up To A Rewarding Career In The Nation's Capital

Anesthesia Services of Fairfax is accepting resumes from CRNAs (or board/eligible graduates) who want the challenge of working on complex cases using our state-of-the-art equipment in an ultra-modern Level I Trauma facility.

We'll give you the opportunity to rotate between a variety of clinical areas. Our comprehensive benefits package includes liability insurance and a starting salary above $50,000.00 for a 40-hour week with additional hours paid at overtime rates.

Wake up to a rewarding career with us. Send your resume, in complete confidence, to: Ms. Pam Williams, Office Manager, Department of Anesthesiology, Fairfax Hospital, 3300 Gallows Road, Falls Church, VA 22046 or call us at (703) 698-3138.

We are an equal opportunity employer.

Anesthesia Services OF FAIRFAX
Endorsed by the AANA!

Principles and Practice of Nurse Anesthesia

Wynne R. Waugaman, CRNA, Ph.D.
Benjamin M. Rigor, M.D.
Leah E. Katz, CRNA, Ed.D., J.D.
John F. Garde, CRNA, M.S.
Hershal W. Bradshaw, CRNA, M.Ed.

The first complete reference by and for nurse anesthetists, this beautifully produced volume brings you the work of today’s leaders in anesthesia education. Together, they provide clear coverage of general principles (including all topics tested in the AANA qualifying examination) and practical “how to” sections for various surgical procedures and specialty areas. Principles and Practice of Nurse Anesthesia has received the endorsement of the Board of Directors of the American Association of Nurse Anesthetists, 1987.

Wynne R. Waugaman, CRNA, Ph.D. is Assistant Professor and Director, Nurse Anesthesia Division, College of Medicine at the Ohio State University. Benjamin M. Rigor, M.D. is Professor and Chairman of the Department of Anesthesiology at the University of Louisville School of Medicine, Louisville, Kentucky. Leah E. Katz, CRNA, Ed.D., J.D. is Adjunct Associate Professor, Department of Anesthesiology at the University of California Los Angeles School of Medicine. John F. Garde, CRNA, M.S., is Executive Director of the American Association of Nurse Anesthetists. Hershal W. Bradshaw, CRNA, M.Ed. (deceased) founded, and held the position of Program Director for Nurse Anesthesia Education at the University of Texas Health Science Center in Houston. In addition, 45 clinicians and anesthesia educators have contributed to this text.

Section Headings
Foundations.
Preoperative Considerations.
Applied Physiology.
Parenteral Therapy.
Anesthesia and the Subspecialties.
Special Problems.
Postoperative Considerations.
Quality Assurance.

Published 9/87, 688 pp., Illus., Cloth, A7940-8, $79.95

Clinical Anatomy for Anesthesiologists

Richard S. Snell, M.D., Ph.D.
Jordan Katz, M.D.

Two highly respected author/clinicians have joined to write this new text designed to provide practitioners with a focused, complete, and accurate source of necessary anatomical information. It focuses on the areas most important to anesthetic practice: the respiratory system, the cardiovascular system, and the nervous system (including the autonomic nervous system.) Surface anatomy and surface landmarks are emphasized, and numerous line drawings clarify anatomical areas. Photographs of living subjects, radiographs of head, neck and thorax, and CT scans will help you relate the concepts covered to actual practice.

Richard S. Snell, M.D., Ph.D. is an internationally known anatomist and author of many textbooks of anatomy. He is Professor and Chairman, Department of Anatomy, at The George Washington University School of Medicine and Health Sciences in Washington, D.C. Jordan Katz, M.D. is Professor, Department of Anesthesiology at the University of California San Diego and Staff Anesthesiologist at the University Hospital and Veterans Administration Medical Center in San Diego. He is internationally known as a clinician and author of the best-selling Atlas of Regional Anesthesia (Appleton & Lange, 1985.)

Contents
Respiratory System—Upper Airway.
Respiratory System—Lower Airway.
Cardiovascular System—Vertebral Column.
Nerve Fibers and Spinal Nerves.
Autonomic Nervous System—The Reception of Pain and the Control of Muscular Activity.

Available 1/88, 384 pp. (approx.), Illus., Cloth, A1258-1, $85.00 (approx.)

TO ORDER
Write, or call Rick Sawyer toll-free at 1-800-423-1359.
(In Connecticut, call 203/838-4400.)
Welcome To The Emergency Room Of Real Life

Our ER is a tent. Or a truck.
You'll find it pitched in the wreckage of a tornado, or parked on the mudbanks of a swollen river.
There are no admissions procedures here. Just the survivors. And the Army National Guard—the 450,000 man backbone of American resolve.
We train for battle, but the skills and disciplines we learn are most often tested against the forces of nature.

Last year we fought 67 forest fires, 29 blizzards, 15 hurricanes, 6 tornados, 3 chemical spills...We rescued, revived, bandaged, fed, and comforted thousands of citizens.
We do it for Country. We do it for our own home towns.
And we do it because every once in a while somebody looks up and says thank you.

Call 800-638-7600 or mail to: Army National Guard
P.O. Box 6000, Clifton, NJ 07015
IRRESISTIBLE FORCE.